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Abstract

This article is a contribution to the understanding of the geometry of the twistor space of a symplectic
manifold. We consider the bundleZ with fibre the Siegel domainSp(2n,R)/U(n) existing over any
given symplectic 2n-manifoldM. Then, after recalling the construction of the almost complex structure
induced onZ by a symplectic connection onM, we study and find some specific properties of both. We
show a few examples of twistor spaces, develop the interplay with the symplectomorphisms ofM, find
some results about a natural almost Hermitian structure onZ and finally prove itsn+ 1-holomorphic
completeness. We end by proving a vanishing theorem about the Penrose transform.
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Let (M,ω) be a smooth symplectic manifold of dimension 2n. Then we may consider
the bundle

π : Zl −→ M (0.1)
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of all complex structuresj on the tangent spaces toM compatible withω. Having fibre a
cell, the bundle becomes interesting if it is seen with a particular and well known almost
complex structure, denotedJ∇ , — with which we start to treatZl by the name of “Twistor
Space” of the symplectic manifoldM. The almost complex structure is induced by a
symplectic connection on the base manifold and its integrability equation has already been
studied[13,14,6,21].

The purpose of this article is two-fold. First, we wish to present results on the complex
geometric nature of the twistor space and, second, to show some of the applications to the
study of symplectic connections. The almost complex structureJ∇ is defined in a very
peculiar way, in the sense, for example, that no matter which complex structure is given on
the base spaceM the bundle projection is never pseudo-holomorphic. The complex geometry
of the twistor space seems, up to a certain degree which we compute, much more difficult
to understand than that one of a regular holomorphic fibre bundle. This is particularly true
in the study of the Penrose Transform, which we see as a direct image from cohomology
of complex analytic sheaves onZ0 to real C∞ sheaves onM. We obtain a “vanishing
theorem” which is what one would expect if both spaces were complex andπ holomorphic
(Section6). We will also show examples of twistor spaces and a compact generalized
“omega” twistor space, in Section3, and give results about a natural Riemannian structure
on Z0 in Section5 (following a different approach, such structure has been considered
in [13]).

Concerning the second purpose of this work, we relate the twistor almost complex
structure to the action of the group of symplectomorphisms ofM on the space of symplectic
connections. In passing by this independent subject, we present our methods in its study
— and apply them on the case of translation invariant symplectic connections, finally just
to find a known result proved by other means, cf.[7]. Later we give a new criteria to
decide when are two given symplectic connections the affine transformation of one another
via a given symplectomorphism ofM. We may then claim to have found a description
of all germs of twistor spaces of a Riemann surface (Sections2–4). Moreover, since the
integrability equation is immediately and always satisfied in casen = 1, with the Levi-
Civita connection in particular, we describe a new C∞ sheaf canonically defined onM,
arising from aC-analytic sheaf onZ0. With this we hope to have contributed to future
studies in the field of twistors.

1. The structure of twistor space

Throughout the text letG = Sp(2n,R) andUl = U(n− l, l), i.e. respectively the groups
of symplectic and pseudo-unitary transformations ofR2n. Also let g andul denote their
respective Lie algebras.

Letω =∑n
i=1 dxi ∧ dyi. Recall that the complex symmetric spaceG/Ul consists of all

real endomorphismsJ such that

{
J2 = −Id, ω = ω1,1for J,

ω(, J) has signature (2n− 2l,2l).
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It is known that these spaces are biholomorphic to open cells of the flag manifoldSp(n)/U(n)
and that the latter lyes on the complex grassmannian ofn-planes inC2n as the space of
lagrangians. Moreover, the boundaries of theG/Ul do not give rise to complex structures
under the inverse of the mapJ �→ √−1-eigenspace ofJ, cf. [1]. In a word, there are no
other complex structuresJ of R2n for whichω is type (1,1).

The vector spaceTJ G/Ul identifies with

mJ = {A ∈ g : AJ = −JA} = [g, J ]

so thatg = mJ + ul and the complex structure is given by left multiplication byJ. We have

[g,mJ ] = mJ , [mJ ,mJ ] ⊂ ul, [ul, ul] ⊂ ul (1.1)

as one can easily compute. It is known that all the symmetric spacesG/Ul are biholo-
morphic to the first one, whenl = 0, which is the same as the Siegel Domain or Siegel

Upper Half Space{X+ iY ∈ C n(n+1)
2 : X, Y symmetric matrices, Y positive definite}, and

hence that they are all Stein manifolds. Up to this moment we have met then+ 1 possi-
ble connected fibres, according to 0≤ l ≤ n, which will correspond to the various twistor
spaces of a symplectic manifold.

Now consider the manifold (M,ω) and the twistor bundle(0.1)with fibreG/Ul. When
necessary we denote this space byZlM . We have a short exact sequence

0 −→ V −→ TZl
dπ−→π∗TM −→ 0 (1.2)

of vector bundles over the manifoldZl. If we letE = π∗TM and denote byΦ the canonical
section of EndE, given by

Φj = j,

then we may identifyV = ker dπ with [sp(E,ω), Φ]. This is justified by the theory above
applied to the fibreπ−1(x), which is thus a complex manifold, for allx ∈ M.

We use now a symplectic connection∇ on TM (see Section2), in order to construct a
horizontal distributionH∇ which splits the sequence(1.2). The following result from the
theory of twistor spaces is adapted to our situation, so we recall the proof briefly — to
introduce notation and for later reference.

Proposition 1.1 ([15]). H∇ = {X ∈ TZl : (π∗∇)XΦ = 0} is a complement for V in TZl.

Let Fs(M) be the symplectic frames bundle ofM, consisting of all linear symplectic
isomorphisms

p : R2n −→ TxM.

This is a principalG bundle overM and∇ is determined by theg-valued 1-formα onFs(M),
given by

∇X(sv) = s(s∗α)(X)v
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for any sections of Fs(M), for X ∈ ΓTM, v ∈ R2n, and byα(Ã) = A whereA ∈ g andÃ
is the vector field

Ãp = d

dt |0
p ◦ exptA.

ker α is a horizontal distribution onFs(M). Fixing J0 ∈ G/Ul, we get a map

π1 : Fs(M) −→ Zl (1.3)

given by

π1(p) = pJ0p
−1.

The derivative ofπ1 maps the horizontal distribution onFs(M) onto a horizontal distribution
onZl. The proposition is proved by showing that this distribution coincides withH∇ .

Notice (1.3) is a principalUl bundle overZl and thatE is also associated toπ1, due
to reduction. SinceΦ is a section of EndE corresponding with the constantequivariant
functionΦ̂(p) = p−1Φπ1(p)p = J0 onFs(M) and since (π∗∇)Φ corresponds to the 1-form

dJ0 + [α, J0],

one may then complete the proof of the proposition.
Denoting by

P : TZ l −→ V

the projection ontoV with kernelH∇ , we have the following consequences.

Proposition 1.2 ([15]). (i) (π∗∇)Φ = [P,Φ] = 2PΦ.
(ii) TZ l = Fs(M) ×Ul mJ0 ⊕ R2n.

We may now define, preserving the direct sumH∇ ⊕ V, the twistor almost complex
structure

J∇ = (Jh, Jv),

on each pointj ∈ Z l as follows: since dπ : H∇ → E is an isomorphism, we transportj
from E to the horizontal bundle.Jh is thus, essentially,j itself. The vertical partJv consists
of left multiplication withj, just like in the Siegel Domain.

Let i = √−1 and letj+ = 1
2(1 − ij), j− = 1

2(1 + ij) be the projections fromTM ⊗ C
onto, respectively,T+M andT−M, for any j ∈ Z l. The integrability equation forJ∇
follows from the next theorem, a result which we present in greater generality for later
convenience. NoticeJ(M) is the general twistor space consisting of all complex structures,
i.e. the bundle with fibreGL(2n,R)/GL(n,C), and that, of course, precisely in the same
lines of the case we have been considering, any linear connection onM defines a twistor
almost complex structure onJ(M).
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Theorem 1.1 ([15]). Let Z be an almost complex manifold and π : Z → M be a smooth
submersion onto M with fibres which are smoothly varying complex manifolds. Suppose
that Z has a horizontal distributionHZ which is j-related to the horizontal distributionH∇
of a connection ∇ on TM via a pseudo-holomorphic smooth fibre preservingmap

j : Z −→ J(M).

Then integrability of JZ implies that the torsion T and curvature R of ∇ satisfy

j+Tx(j−X, j−Y ) = 0, j+Rx(j−X, j−Y )j− = 0 (1.4)

for all j ∈ j(Z) and X, Y ∈ TxM. If j is an immersion these conditions are also sufficient.

In the case ofZ l, j is just the inclusion map and Eqs.(1.4)are equivalent to the vanishing
of the Weyl part of the curvature of the given symplectic connection (see Section2, [6] and
[1] for definition and references). In this regard, this Weyl tensor plays a role in symplectic
geometry identical to that Weyl tensor of a metric connection in the theory of twistor spaces
in Riemannian geometry, cf.[4,15].

We remark that a proof of the independency of the Eqs.(1.4) from the signature, which
varies with l, is also written down in[1]. Hence, either all theZ l — or none — have
integrable almost complex structures.

The following is particular to the symplectic framework.

Theorem 1.2. If J ∇1 = J ∇2
then ∇1 = ∇2.

Proof. LetA = ∇2 − ∇1 and defineA ∈ ΓS3T ∗M by

A(X, Y,Z) = ω(A(X)Y,Z)

= ω(A(Y )X,Z) = ω(A(Z)Y,X)

for all X, Y,Z ∈ TM.
Now suppose thatJ ∇1 = J ∇2

andu is any∇1-horizontal vector field of type (1,0).
Thenu = u2 + v, with v vertical, also a (1,0) vector field, andu2 a horizontal vector field
for ∇2. Hence

[v,Φ] = π∗∇2
uΦ

= [π∗A(dπ u), Φ] ∈ V(1,0)

(by Propositions 1.1 and 1.2and noticing that [J0,m
+
J0

] ⊂ m+
J0

). In the base manifold this
translates as

[Ax(j
+X), j] is (1,0), ∀j ∈ π−1(x), ∀X ∈ TxM.

Equivalently this means the projection toV c is (1,0), or

j−A(j+X)j+ = 0, ∀j, ∀X.
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The equalityA3,0 = 0,∀j, follows immediately. This saysAmust take values in the largest
G-invariant subspace of symmetric tensors which satisfy

A(J+
0 X, J

+
0 Y, . . .) = 0

for some fixedJ0 and allX, Y, . . .. Indeed, since anyj = gJ0g
−1 for someg ∈ G, we will

also havej+ = 1
2(1 − ij) = gJ+

0 g
−1 and therefore

0 = (g−1 · A)(J+
0 X, J

+
0 Y, . . .) = A(gJ+

0 X, gJ
+
0 Y, . . .)

= A(j+gX, j+gY, . . .).

But Sk(C2n) is irreducible underG for all k, soA must be 0. �

2. Symplectic connections

LetM,N be two manifolds andσ : M → N a diffeomorphism between them. Let∇ be
a linear connection onM. Recall that we can define another connection onN by

(σ · ∇)XY = σ · (∇σ−1·Xσ
−1 · Y ),

whereX, Y ∈ XN and where

σ · Zy = dσ(Zσ−1(y))

for anyZ ∈ XM, y ∈ N. It is well defined, at least, on paracompact manifolds.
Indeed, from any tensor onM we can define another one onN. Notice as well that

σ · fZ = (f ◦ σ−1)σ · Z = σ · fσ · Z, for all f ∈ C∞
M , so we prove the last statement and

check Leibniz rule forσ · ∇. Furthermore, the torsion and curvature satisfy

T σ·∇ = σ · T∇ , Rσ·∇ = σ · R∇ , (2.1)

sinceσ · [Z,W ] = [σ · Z, σ ·W ]. Obvious composition rules are satisfied and

(σ · ∇)Xω = σ · (∇σ−1·Xσ
∗ω) (2.2)

for any formω on N. For instance, let us prove the last formula:

σ · (∇σ−1·Xσ
∗ω)(Y1, . . . , Yq) = (∇σ−1·Xσ

∗ω)(σ−1 · Y1, . . . , σ
−1 · Yq)

= (σ−1 ·X)(σ∗ω(σ−1 · Y1, . . . , σ
−1 · Yq))

−
∑
i

σ∗ω(σ−1 · Y1, . . . ,∇σ−1·Xσ
−1 · Yi, . . . , σ−1 · Yq)

= d(ωσ(Y1, . . . , Yq))(dσ
−1(X))

−
∑

ω(Y1, . . . , (σ · ∇)X Yi, . . . , Yq) = (σ · ∇)Xω(Y1, . . . , Yq).

As we said before,σ−1 · ω = σ∗ω.
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Remark. In a marginal outlook, the above may be applied in Chern-Weil theory to find
that all characteristic classes onTM, induced from multilinear formsf i : ⊗ig→ R or
C, sayH-invariant whereH is some Lie group, are fixed points of cohomology for every
diffeomorphism preserving someH-structure ofM. The proof goes as follows. Taking any
H-connection∇, assumed to exist, we then have

f i(Rσ
−1·∇ , . . . , Rσ−1·∇ ) = f i(dσ−1(σ∗R∇ ) dσ, . . . ,dσ−1(σ∗R∇ ) dσ)

= σ∗f i(R∇ , . . . , R∇ ).

Hence, by the independence of the induced de Rham cohomology classes from the choice
of the connection, the former are fixed points forσ∗. Of course the result is interesting when
Diff (M) has many arcwise-connected components.

From now on we are interested in the case whereM andN are symplectic manifolds and
σ is a symplectomorphism. Recall that a linear connection on (M,ω) is called symplectic
if ∇ω = 0 and if it is torsion free. In such case, by formulae(2.1) and (2.2), we have that
σ · ∇ is symplectic too. In particular, we have an action

Symp(M,ω) ×A −→ A

on the space of symplectic connections, which preserves the subspace of flat connections.
A is never empty.

Theorem 2.1 (P. Tondeur, cf.[5]). Every symplectic manifold admits a symplectic connec-
tion.

Furthermore, if a Lie groupH acts onM by symplectomorphisms and thus on the space
of connections, thenM has aH-invariant connection if and only if it has aH-invariant
symplectic connection.

Notice that any manifold with a torsion free connection and a non-degenerate parallel
two-form is necessarily symplectic.

We now show a few recent results from[5–8,20], for they constitute an important part
of the theory of symplectic connections. In order to find a smaller subspace ofA it was
introduced in[5] a variational principle

∫
M

R2ωn

whereR2 = RαβγδR
αβγδ, with Rαβγδ = Rα′β′γ ′δ′ω

αα′
ωββ

′
ωγγ

′
ωδδ

′
, and where

R(X, Y,Z, T ) = ω(R∇ (X, Y )Z, T )
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— a tensor in∧2T ∗M ⊗ S2T ∗M. This verifies the first Bianchi identity, becauseT∇ = 0,
and a second Bianchi identity

The representation theory on the space of tensors likeR, under the action ofSp(2n,R),
has been determined by I. Vaisman in[20]. It is known that the curvature of∇ has two
irreducible components. So we writeR = E +W where

E(X, Y,Z, T ) = − 1

2(n+ 1)
{2ω(X, Y )r(Z, T ) + ω(X,Z)r(Y, T ) + ω(X, T )r(Y,Z)

−ω(Y,Z)r(X, T ) − ω(Y, T )r(X,Z)}.
r(X, Y ) = Tr {Z �→ R∇ (X,Z)Y} is the Ricci tensor.W is called the Weyl tensor and the
connection is said to be of Ricci type ifW = 0. This Weyl part ofR plays a role parallel
to that of the Weyl curvature tensor in Riemannian geometry. In our case too, it is 0 in
dimension 2. The variational principle yields the field equations

(2.3)

having as particular solutions the Ricci type connections.
In [8], we meet a further characterization of∇r and find the interesting result that, if

(Mi, ωi,∇i) are two symplectic manifolds together with corresponding symplectic connec-
tions and such that the symplectic∇ = ∇1 + ∇2 over the cartesian product (M1 ×M2, ω1 +
ω2) is of Ricci type, then all three connections must be flat.

A result proved in[6] shows that with its standard 2-formCPn is of Ricci type —
of course the Levi-Civita connection becomes a symplectic connection in the Kählerian
framework.

Still for later purposes, we show the following example. Consider (R
2, ω) with the usual

coordinatesz = x+ iy and symplectic structureω = i
2dz ∧ dz̄ = dx ∧ dy, and let

∂z = ∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂z̄ = ∂

∂z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

Proposition 2.1. Every symplectic connection on (R2, ω) is uniquely determined by two
functions α, β ∈ C∞

M (C) satisfying

∇∂z∂z = α ∂z + β ∂z̄ = ∇∂z̄∂z̄

and

∇∂z∂z̄ = −α ∂z − α ∂z̄ = ∇∂z̄∂z.
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The proof is elementary. Indeed, thereal and torsion free assumptions, together with

i

2
α = ω(∇∂z∂z, ∂z̄) = −ω(∂z,∇∂z∂z̄),

give us the formula. Because sometimes is impossible tokeep complex, we show the real
correspondent of the last proposition. If

∇∂x∂x = b ∂x − a ∂y, ∇∂y∂y = d ∂x − c ∂y, (2.4)

∇∂x∂y = c ∂x − b ∂y = ∇∂y∂x, (2.5)

with a, b, c, d : R2 → R, then

α = −b+ d

4
− i

a+ c

4
and β = 3b− d

4
− i

3c − a

4
.

2.1. Translation invariant symplectic connections

Here we study connections inM = Rm. Let s denote the global frame

s =
(
∂

∂x1
, . . . ,

∂

∂xm

)

and let∇0 = d be the trivial connection: in the example above,α = β = 0.

Proposition 2.2. (i) A connection ∇ is flat iff there exists an open cover {Ui} of M and a
collection of maps gi : Ui → GL(m,R) such that

∇s = sgidg
−1
i . (2.6)

(ii) Let σ ∈ Diff (Rm) and ∇ = σ · ∇0. Then the map g given by

g ◦ σ = Jacσ (2.7)

satisfies Eq. (2.6)globally.
(iii) Given any map g : M → GL(m,R), a necessary condition for Eq. (2.7) to have

solution in variable σ, corresponding to Schwarz theorem of mixed derivatives, is that the
flat connection defined by formula (2.6) is torsion free.

(iv) The isotropy subgroup of ∇0 is Diff (M)∇0 = GL(m,R)�Rm.

Proof.

(i) The condition of∇ being flat is equivalent to the local existence of parallel frames
(solution to a system of quasi-linear differential equations of the first order). The result
follows by straightforward computations.

(ii) ∇ is flat sinceR∇ = σ · R∇0 = 0. Now, we have thatσ · s = sg with someg : Rm →
GL(m,R). Then

∇Xsg = σ · (∇0
σ−1·X s) = 0
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for any vector fieldX. On the other hand,

∇ sg = (∇s)g+ sdg = s(Ag+ dg)

if ∇ = ∇0 + A. HenceAg = −dg, which is equivalent toA = gdg−1. Now, forσ =
(σ1, . . . , σm), since

σ · s =
(

dσ

(
∂

∂x1
(σ−1)

)
, . . . ,dσ

(
∂

∂xm
(σ−1)

))

=
(
∂σ1

∂x1

∂

∂x1
+ · · · + ∂σm

∂x1

∂

∂xm
, . . . ,

∂σ1

∂xm

∂

∂x1
+ · · · + ∂σm

∂xm

∂

∂xm

)
(σ−1)

= sJacσ|σ−1,

we may deduce formula(2.7).
(iii) Again, notice thatT∇ = σ · T∇0 = 0 is a necessary condition for the existence of a

mapσ. We just have to check this agrees with Schwarz theorem. On one hand, if
y = σ(x),

∂2σj

∂xi∂xk
= ∂

∂xi
(gjk ◦ σ) = ∂gjk

∂yl

∂yl

∂xi
= ∂gjk

∂yl
gli.

On the other hand, if (ek) is the canonical basis,

∇∂i∂k = −sdg
(
∂

∂xi

)
g−1eTk = −s∂gjt

∂xi
gtk.

This is equal to∇∂k ∂i iff

(
∂gjt

∂xi
gtk
)
gkαgiβ =

(
∂gjt

∂xk
gti
)
gkαgiβ

or

∂gjα

∂xi
giβ = ∂gjβ

∂xk
gkα

which is the equation we were looking for.
(iv) If σ · ∇0 = ∇0, then Jacσ is constant by Eqs.(2.6) and (2.7). Integrating, we find the

group of affine transformations.�

Given a connection∇, notice the system of partial differential equations∇ = σ · ∇0 in
variableσ is second-order nonlinear. However, we have checked that it is a first-order linear
in the entries of Jacσ|σ−1 and easily integrated as such. Indeed, we have just proved that
solving∇ = σ · ∇0 is equivalent to solving Eq.(2.7).
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Supposing solutionsσ exist, composing them with any translationx �→ x+ v, v ∈ Rm,
will also give a solution. So we may look forσ such thatσ(0) = 0. Also, assumingg(0) = 1
is not a problem either, as one deduces from the formula in the proposition — it corresponds
to a gauge transformation.

We give a simple example just to illustrate the proposition: consider the open setR
+ × R

and, in real coordinate functions, cf.(2.5), take the connectiona = c = 0, d = x andb =
− 1

2x . An easy computation shows∇ is flat. A little extra work to find the group-valued map
g, leads then to the problem of finding (σ1, σ2) such that




√
2σ1

2
e
− σ2√

2 −√
σ1e

σ2√
2

1

2
√
σ1

e
− σ2√

2

√
2

2
√
σ1

e
σ2√

2


 =



∂σ1

∂x

∂σ1

∂y

∂σ2

∂x

∂σ2

∂y


 .

Notice{σ1, σ2} = det Jacσ = 1. This is the case where the mapg takes values inSL(2) =
Sp(2,R). In general, if the map isG-valued, then∇ is aG-connection.

There is a type of connections for which we have found a solution to the problem
raised before. Consider a symplectic connection inR2n which is translation invariant, that
is Tv · ∇ = ∇ for all mapsTv(x) = x+ v, v ∈ R2n. Letting ∇ = ∇0 + A whereA is a
sp(2n,R)-valued 1-form, then we must have

Tv · (∇0 + A) = ∇0 + Tv · A = ∇0 + A.

Since dTv = Id, one does not take long to conclude thatAx+v = Ax, i.e. A is a constant
1-form. The following theorem has been proved with entirely different methods.

Theorem 2.2 ([7]). Let ∇ be a flat, translation invariant and symplectic connection on the
manifold R2n. Suppose ∇ = ∇0 + A. Then A(X)A(Y ) = 0 for all vectors X, Y, and with
the map

σ(x) = x− 1
2A(x)x

we have ∇ = σ · ∇0.

Proof. First we have

0 = R∇ = d∇0
A+ A ∧ A = A ∧ A

so that [A(X), A(Y )] = 0 for any pair of vector fields. Hence, to seeA(X)A(Y ) = 0, we
just have to showA(X)A(X) = 0. LetX ∈ R2n be fixed and consider the two-form

α(Y,Z) = ω(A(X)Y,A(X)Z).
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By the torsion free assumption,A(X)Y = A(Y )X, soα also satisfies

α(Y,Z) = ω(A(Y )X,A(Z)X)

= −ω(A(Y )A(Z)X,X)

and hence, being symmetric, it must vanish — which impliesA(X)A(X) = 0. This proves
the first part of the theorem.

From Proposition 2.2we have thatA = gdg−1 for some globalg ∈ A0(Sp(2n,R)).
Certainly, in canonical coordinates (x1, . . . , x2n)

A =
∑

Ai dxi = d
(∑

xiAi

)

with constantAi. Now letB =∑ xiAi = A(x). Again, dBB = B dB so if we put

g = e−B =
∑
m≥0

(−B)m

m!

thengdg−1 = dB = A. According to the sameProposition 2.2we are left to solve the
equation

e−A(σ) = Jacσ

or equivalently

1 − A(σ) = Jacσ.

In the canonical basis (ei) of R2n, this is the same as

ei − A(σ)ei = ∂σ

∂xi
.

Lettingσ(x) = x− 1
2A(x)x then on one hand we have

A(σ(x)) = A(x) − 1
2A(A(x)x) = A(x)

and on the other

∂σ

∂xi
= ei − 1

2A(ei)x− 1
2A(x)ei = ei − A(x)ei

so the given map satisfies the differential equation, as we wished.�

We acknowledge the help of[7] in seeing theA(X)A(Y ) = 0 part, in dimensionsn ≥ 2.
Finally, one may easily find the set of non-zero 1-formsA representing flat, translation
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invariant symplectic connections inR2, up to a scalar factor. It is in 1-1 correspondence
with thenon-empty curve

{
[a : b : c : d] ∈ P3(R) : bc − ad = 0, b2 − ac = 0

}
\{pt},

wherept = [0 : 0 : 1 : 0],which we may compactify by adding the trivial connection.

3. Examples

According to[15], a twistor space over a base spaceM is an almost complex manifold
Z together with a submersionf : Z → M with fibres almost complex submanifolds. For
eachz in the fibreZx = f−1(x) we have an isomorphism

TzZ

Vz
−→ TxM

whereVz = ker dfz = TzZx. Then, since the vector spaceTzZ/Vz is complex, we can take
this complex structure toTxM in order to construct a map

j : Z −→ J(M).

Of coursef is a pseudo-holomorphic map with respect to some structure onM if, and only
if, j is constant along the fibres.

If (M,ω) is a symplectic manifold, we shall callZ an “ω-twistor space” if the image of
j is in someZ l. For example, given a symplectic connection∇ on M, the tautology of the
definition ofJ∇ provesZ l to be a trueω-twistor space.

Recall that the Siegel domain and allG/Ul sit holomorphically and separately in a
Grassmannian. So we ask for an extension ofJ∇ to the compactSp(n)/U(n)-bundle of
complex, lagrangiann-planes over the real symplectic 2n-manifoldM. Such extension does
not exist (unfortunately), although the standard fibre is a complex symmetric space.

Proposition 3.1. It is not possible to extend (Z l,J∇ ) to a bigger almost complex manifold
of the same dimension, which is also a fibre bundle over M.

Proof. Assuming the extension to an almost complex spaceZ exists, the theory above
yields a continuous map

j : Z l −→ J(M)

on the closure ofZ l in Z, because, ifz is any point on the boundary of the twistor space,
projecting to a pointx ∈ M, thenTzZx is still a complex vector space — it is the limit of
complex vector subspaces inside a complex vector space.

Also by continuity, we have thatω = ω1,1 for j(z) and the induced inner productω(, j(z) )
has the same signature. However,j is the identity inZ l so we arrive to a contradiction.�
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Regarding a matter of different nature, it seems that the ‘non-constant’ compactω-twistor
spaces are not easy to construct or describe.

Proposition 3.2. There are no ω-twistor spaces with compact fibres of dim > 0 satisfying
the hypothesis of Theorem 1.1and with the map j an embbeding.

Proof. AssumingZ was such a space, then

j : Z −→ Z l

would be holomorphic when restricted to each fibre. However, anyG/Ul is a Stein manifold
so its compact analytic submanifolds are points.�

Clearly the proposition avoids the case of any holomorphic submersionf : Z → M,
which induces a mapj constant along the fibres.

Here we have the promised examples of twistor spaces.

Example 1. LetM = R2, ω the canonical symplectic form,∇ any symplectic connection
on M — seeProposition 2.1, from which we use the descriptions and notations in what
follows. We want to describeZ0

M in terms of its∂ operator, sinceJ∇ is always integrable.
There is a simple way to see this:R∇ is a two-form, so it is proportional toω. Then, since
ω = ω1,1 for j ∈ Z0

M , we haveR∇ (j− , j− ) = 0, and so we applyTheorem 1.1to prove
the claim. Otherwise, one may recall that the Weyl part of the curvature is always zero in
the two dimensional case.

Now supposev ∈ T 0,1M = T−M for j. If v = ∂
∂z

thenj ∈ −Z0 = Z1, so we may al-
ready assume, up to a scalar,

v = ∂

∂z̄
+ w

∂

∂z

for somew ∈ C. The “positive” condition reads−iω(v, v̄) < 0. Since

− iω(v, v̄) = 1

2
dz ∧ dz̄

(
∂

∂z̄
+ w

∂

∂z
,
∂

∂z
+ w̄

∂

∂z̄

)
= 1

2
(ww̄− 1), (3.1)

we recover1 the Siegel diskD = {w : |w| < 1}. BecauseTM is C∞-trivial we have

Z0 = M ×D π−→M.

Now working together withTZ0 ⊗ C let

u = ∂

∂z̄
+ w

∂

∂z
+ P ∂

∂w
+Q ∂

∂w̄

1 In [1] it is proved that the mapJ �→ −i-eigenspace is holomorphic, from the Siegel domain, with ‘left multi-
plication byJ onTJG/Ul ’, to the Grassmannian of complexn-planes inC2n.
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be aJ∇ -(0,1)-horizontal vector field, thus projecting tov = dπ(u) and wherew is the fibre
variable. Recall the canonical sectionΦ ∈ Γ (Endπ∗TM) defined byΦj = j. Then

Φv = −iv

where we seev as a (0,1)-section of (π∗TM)c. We can compute the functionP solving(
π∗∇uΦ

)
v = 0. (3.2)

On the left hand side we have — recallProposition 2.1—

(π∗∇uΦ)v = π∗∇uΦv−Φπ∗∇uv
= −(i+Φ)π∗∇uv

= −(i+Φ)

(
∇dπ(u)

∂

∂z̄
+ u(w)

∂

∂z
+ w∇dπ(u)

∂

∂z

)

= −(i+Φ)

(
∇∂z̄∂z̄ + w∇∂z∂z̄ + P ∂

∂z
+ w∇∂z̄∂z + w2∇∂z∂z

)

= −(i+Φ)

(
α
∂

∂z̄
+ β

∂

∂z
− αw

∂

∂z
− αw

∂

∂z̄
+ P ∂

∂z
− αw

∂

∂z
− αw

∂

∂z̄

+w2α
∂

∂z
+ w2β

∂

∂z̄

)

= −(i+Φ)

(
(β − 2αw+ P+ w2α)

∂

∂z
+ (α− 2αw+ w2β)

∂

∂z̄

)
.

Eq. (3.2) says we are in the presence of a (0,1)-vector forj, therefore by colinearity there
existsλ ∈ C such that

(β − 2αw+ P+ w2α)
∂

∂z
+ (α− 2αw+ w2β)

∂

∂z̄
= λ

(
∂

∂z̄
+ w

∂

∂z

)
.

Henceforth

β − 2αw+ P+ w2α = αw− 2αw2 + w3β

and thus we get a cubic inw with coefficients in C∞
R2(C):

P = −β + 3αw− 3αw2 + βw3.

To find the functionQ one would have to proceed as above but with (1,0)-vector fields.

Proposition 3.3. (i) f ∈ OZ0 if and only if

∂f

∂w̄
= 0

∂f

∂z̄
+ w

∂f

∂z
+ P(z,w)

∂f

∂w
= 0.
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(ii) Let j : R2 → Z0 be a section, represented in coordinates by the map z �→ (z,w(z)).
Then j is (j,J∇ )-holomorphic iff w satisfies

∂w

∂z̄
+ w

∂w

∂z
− P(z,w(z)) = 0.

Proof.

(i) According to the footnote,∂/∂w̄ is a (0,1)-vector field tangent to the fibres ofZ0, hence
the first equation. The second isu(f ) = 0.

(ii) We consider holomorphic functionsf on the twistor space, thus satisfying the system
in (i), and then claim thatj is (j,J∇ )-holomorphic ifff ◦ j is holomorphic,∀f . This
corresponds to

d(f ◦ j)
(
∂

∂z̄
+ w(z)

∂

∂z

)
= 0.

Equivalently,

∂f

∂z̄
+ ∂f

∂w

∂w

∂z̄
+ ∂f

∂w̄

∂w̄

∂z̄
+ w

∂f

∂z
+ w

∂f

∂w

∂w

∂z
+ w

∂f

∂w̄

∂w̄

∂z
= 0

or (
−P(z,w) + ∂w

∂z̄
+ w

∂w

∂z

)
∂f

∂w
= 0.

Since there exist sufficient holomorphic functions, we are finished.�

Remarks.

1. By Darboux’s theorem, the proposition describes locally the twistor space of any Rie-
mann surface.

2. We give an independent proof of integrability: for the given basis of (0,1)-vector fields, we
have that

[
∂
∂w̄
, u
] = ∂P

∂w̄
∂
∂w

+ ∂c
∂w̄

∂
∂w̄

= ∂c
∂w̄

∂
∂w̄

is again a (0,1)-tangent vector. (The almost
complex structureJ∇

2 = (Jh,−Jv) is never integrable, cf.[1,19], so this computation
confirms the correct choices in our example.)

3. In the general theory of twistor spaces, a sectionj is (j,J∇ ) holomorphic if and only if
it satisfies a well known condition (cf.[18,19]): ∇uv ∈ ΓT+M,∀u, v ∈ ΓT+M.

Example 1.1. This is the trivial case; recall the connection∇0 is symplectic becauseM = R2

is Kähler, so assumeα = β = 0. We have the following global chart:

Z0 = M ×D −→ C×D
(z,w) �−→ (wz̄− z,w)
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(this map is injective if and only if|w| �= 1). Adding a point at infinity on the right hand
side and recalling the grassmannian model of the twistor space, the same map composed
with 1/w gives a chart ofZ1. Curiously, this example is the only one for which the natural
fibre chartw is aglobally holomorphic function. Also,C×D is convex, so we conclude
Z0
M,Z

1
M with complex structureJ∇0

are both Stein two-manifolds.

One could also try to find the global charts for the flat torus or cylinder.

Example 2. This is the generalisation of Example 1.1. Letω = i
2

∑n
k=1 dzk ∧ dz̄k. We give

a description ofZ0
R2n with complex structure arising from∇0.

First notice that for any elementj we can find a basis ofT−M with vectors of the kind

vk = ∂

∂z̄k
+
∑
l

wkl
∂

∂zl
,

with k = 1, . . . , n,wkl ∈ C. For, if a linear combination of the∂/∂zl, only, were inT−M,
then the positive condition would not be satisfied. Now,ω being (1,1) forj implies

0 = ω(vk1, vk2) = i

2
(wk1k2 − wk2k1).

The positive condition is given by

0> −iω(vk, v̄k) = 1

2

∑
l

dzl ∧ dz̄l

(
∂

∂z̄k
+ wkp

∂

∂zp
,
∂

∂zk
+ w̄kq

∂

∂z̄q

)

= 1

2

∑
l

(−δkl + wklw̄kl)

= 1

2

(
−1 +

∑
l

|wkl|2
)

where repeated indices inp, q have denoted a sum. With respect to the symmetric ma-
trix W = [wkl] this is equivalent to 1−WW∗ > 0 and so we meet another well known
description of the Siegel domain.

Continuing to reason as in Example 1 we find that a functionf on the twistor space is
holomorphic if, and only if,vk(f ) = 0, ∂f/∂w̄pq = 0. So a global chart forZ0

R2n is given
by the functions

fpq(z1, . . . , zn, w11, . . . , wn−1,n) = wpq,

fk(z1, . . . , zn, w11, . . . , wn−1,n) = z̄kwkk − zk

wherep ≤ q and 1≤ k ≤ n.
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Example 3. ConsiderM = S2 = R2 ∪ {∞} with its Kähler metric and corresponding Levi-
Civita connection, which is thus symplectic. The two-form isω = i

2
dz∧dz̄

(1+|z|2)2
so, proceeding

as in(3.1), we describe the fibres over the open setR2 with the diskD again. Following
the theory of hermitian manifolds, the connection is type (1,0), i.e. transforms holomorphic
sections in (1,0)-forms. Thus∇ onT ∗M is determined by

∇dz = αdz⊗ dz

and a conjugate version of this equation, bearing in mind∇ is real. Solving∇ω = 0 leads
to

α = 2z̄

1 + |z|2 .

Proceeding then exactly as in Example 1 we find:f ∈ OZ0
M−{∞}

if and only if



∂f

∂w̄
= 0

∂f

∂z̄
+ w

∂f

∂z
+ 2w(wz̄− z)

1 + |z|2
∂f

∂w
= 0.

(3.3)

Now let (z1, w1) denote coordinates for the twistor space ofM minus the other pole.
The affine transformation on the basez1 = σ(z) = 1/z is raised to aJ∇ -holomorphic
transformation of the twistor space.w1 is defined by requiring that

(dσ)c
(
∂

∂z̄
+ w

∂

∂z

)
= λ

(
∂

∂z̄1
+ w1

∂

∂z1

)

for someλ ∈ C. That is, the real map dσ applies a (0,1)-w-vector into a (0,1)-w1-vector.
We find

w1 = z̄2

z2w

and (z,w) �→ (z1, w1) is holomorphic because one verifies by straightforward computations
that if a functionf (z1, w1) satisfies the system(3.3) in variables (z1, w1) then

f

(
1

z
,
z̄2

z2w

)

also satisfies the linear system in variables (z,w).
We shall see in the next section that this last result is a manifestation of∇ beingσ-

invariant. The latter can be deduced by uniqueness of the Levi-Civita connection after
verifying σ is an isometry — which is immediate, since dz1 = − 1

z2
dz and thusσ · ω = ω.
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Example 4. There existcompact ω-twistor spaces: LetT2 be the torus and consider the
trivial bundle

Z = T2 × S2 pr1−→T2

with almost complex structureJZ given by the following basis of (0,1)-tangents: the vectors

∂

∂z̄
+ |t|

1 + |t|2
∂

∂z
and

∂

∂t
.

z is the usual chart ofR2 and t is a fixed affine coordinate ofS2 = P1(C). Note that, for
t �= 0, we have

|1/t|
1 + |1/t|2 = |t|

1 + |t|2 < 1,

soJZ is well defined and preserves the natural splitting ofTZ. Moreover, it is compatible
with the canonical symplectic structure ofZ. NoticeJZ is not integrable, but this is not
important for our purposes.

HenceZ is anω-twistor space. The mapj : Z → Z0
T2 = T2 ×D induced by dpr1 and

theC-vector bundleTZ/ ker dpr1 identifies with

j(z, t) =
(
z,

|t|
1 + |t|2

)

by construction. For the reader to compare withProposition 3.2, note thatj is not even open
along the fibers.

4. A holomorphic map

Let (M,ω), (M1, ω1) be two symplectic manifolds andσ : M → M1 a symplectomor-
phism. Thenσ induces an invertible transformation fromZ lM ontoZ lM1

preserving the
fibres, i.e. a mapΣ such that the diagram

Z lM
Σ→ Z lM1

π ↓ ↓ π1

M
σ→ M1

commutes. Indeed, for anyy ∈ M1, j ∈ π−1(σ−1(y)) we define

Σ(j) = dσ ◦ j ◦ dσ−1

an element inπ−1
1 (y). It is trivial to checkΣ is well defined and invertible.
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AssumeZ lM,Z
l
M1

have twistor almost complex structuresJ∇ andJ∇1
, respectively,

where∇1 = σ · ∇ and∇ is a given symplectic connection. We then have the following
result.

Theorem 4.1. Σ is pseudo-holomorphic.
Proof. Notice thatΣ, when restricted to each fibre, extends to a linear map between
EndTσ−1(y)M and EndTyM1. Hence

dΣ(jA) = Σ(jA) = Σ(j)Σ(A) = Σ(j) dΣ(A)

and we may conclude the map isvertically pseudo-holomorphic.
Now supposeΣ∗H∇ = H∇1

. Using the isomorphism dπ1 : H∇1 → π∗
1TM1, we have

dπ1 ◦ dΣ Jhj = dσ ◦ dπ((dπ)−1 j dπ) = dσ ◦ j ◦ (dσ−1 ◦ dσ) ◦ dπ

= Σ(j) d(σ ◦ π) = Σ(j)dπ1 ◦ dΣ = dπ1J
h
Σ(j)dΣ.

So the theorem follows after we proveΣ∗H∇ = H∇1
, which is exactly the case when we

consider the particular connection∇1.
Fix a real symplectic vector spaceV and letF,F1 be, respectively, the frame bundles of

M andM1. Consider theG-equivariant map

 : F −→ F1

p �−→ dσ ◦ p

where the pointsp : V → TxM are linear isomorphisms. Ifs : U → F is a section on a
neighborhoodU of x ∈ M, then

s1 =  ◦ s ◦ σ−1 : σ(U) −→ F1

is a section on a neighborhood ofσ(x). We wish to show first thatΛ preserves the horizontal
distributions induced by the connections. Letα, α1 denote the connection 1-forms onF
andF1.

∇Xxs = s(s∗α)(Xx)

and

(σ · ∇)Yσ(x)s1 = s1(s∗1α1)(Yσ(x)) = Λ ◦ s ◦ σ−1
σ(x)[(Λ ◦ s ◦ σ−1)∗α1](Yσ(x))

= dσ s(s∗Λ∗α1)dσ−1(Yσ(x)) = dσ s(s∗Λ∗α1)(σ−1 · Y )x.

On the other hand, since (σ−1 · s1)x = dσ−1(s1σ(x)) = sx, we have

(σ · ∇)Yσ(x)s1 = σ · (∇σ−1·Y σ
−1 · s1)σ(x) = dσ(∇(σ−1·Y )x s) = dσ s(s∗α)(σ−1 · Y )x.
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Henceforths∗Λ∗α1 = s∗α and we prove the claim that kerα1 = Λ∗ ker α by taking
horizontal frames along paths inM passing throughx. (With vertical fundamental vector
fields one can actually see further thatΛ∗α1 = α.)

Finally letζ : F → Z be the once introduced fibre bundle (cf. first section, formula(1.3))
with bundle map

ζ(p) = pJ0p
−1,

whereJ0 ∈ G/Ul is some compatible complex structure ofV. Clearly

Σ ◦ ζ(p) = dσ pJ0p
−1dσ−1 = ζ1 ◦Λ(p)

and we know theζ preserve the horizontal tangent bundles:

ζ∗ ker α = H∇ , ζ1∗ ker α1 = Hσ·∇ .

Now it is no longer difficult to see thatΣ∗H∇ = Hσ·∇ . �
We notice that the construction and results above are true for the general twistor space

J(M). Indeed, the proof does not mention any particular feature of symplectic manifolds.

Remark. An application of the last theorem is the result at the end of Example 3 in Section
3. The theorem confirms that the PDE system given there is preserved under the change of
affine coordinates inS2. It also applys in the following strictly real situation: since (R2, ω)
is symplectomorphic to the Poincaré disk (D, ω1), where

ω1 = i

2

dz ∧ dz̄

(1 − |z|2)2
,

we can studyZ lD using the theorem and Example 1 in Section3 (it corresponds to find the
Darboux coordinates inD and the respective connection’s parameters).

There is a partial converse to the theorem, which is only valid in the symplectic category.
In the following we assume all the previous setting.

Corollary 4.1. Let ∇2 be any symplectic connection onM1 and supposeΣ : (Z lM,J
∇ ) →

(Z lM1
,J∇2

) is holomorphic. Then

∇2 = σ · ∇

i.e. ∇2 is in the affine transformation orbit of ∇.

Proof. We have

J∇2 = dΣ ◦ J∇ ◦ dΣ−1 = J σ·∇

so the result follows byTheorem 1.2. �
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We remark that the theorem has the apparent merit of transforming a second-order PDE’s
problem into a first-order one.

5. The metric

In order to introduce a Riemannian structure on the twistor spaceZ0
M we need a further

amount of theory from[15]. Recall the exact sequence(1.2), whereE = π∗TM is a vector
bundle overZ0

M with canonical complex structureΦ. Also important to recall here are
Propositions 1.1 and 1.2.

Let∇ be a symplectic linear connection on the given 2n-dimensional symplectic manifold
M. Let P ∈ A1(V) denote the projection with kernelH∇ , induced by the connection. Via
the identity

Vj = {A ∈ sp(Ej, π−1ω) : AΦj = −ΦjA}

P can also be seen as an endomorphism-valued one-form on the twistor space. We may thus
define a new connection onE by

D = π∗∇ − P,

which turnsπ∗∇Φ = [P,Φ] equivalent to

DΦ = 0.

It follows that D on EndE preservesV and henceDJv = 0. Indeed, this connection is
symplectic because its difference to an obviously symplectic connectionπ∗∇ stays within
sp(E,π−1ω), and hence, as a derivation, acts trivially on the two-form.

The isomorphismπ∗ : H∇ → E allows us to transferD, to give rise to a new connection
D onH∇ satisfying

(DJh)X = π−1∗ (D(π∗JhX)) − Jhπ−1∗ (Dπ∗X)

= π−1∗ (DΦ)π∗X = 0.

Henceforth we have defined aC-linear connection onTZ0 = V⊕H∇ preserving this
splitting, exactly in the same lines of the general twistor theory ([15]). Sinceπ∗ resulted in
a parallel andC-linear isomorphism, one often identifiesH∇ with E.

Now we need the following theorem valid in general inJ(M) and which we may improve
in a little detail.

Theorem 5.1 ([15]). The connection D on the tangent bundle of Z0
M has torsion whose

vertical part is the projection of π∗R∇ − 1
2 P ∧ P into V, and whose horizontal part is

π∗T∇ − P ∧ dπ after identifyingH∇ with E.



236 R. Albuquerque, J. Rawnsley / Journal of Geometry and Physics 56 (2006) 214–246

Since [mJ ,mJ ] ⊂ gl(2n, J), cf. Section1, one concludes that the vertical part ofTD is
justP(π∗R∇ ). Also notice we are already assuming∇ is torsion free, so both formulas in
the theorem can be simplified.

The present section is devoted to the study of a natural Riemannian structure onZ0
M ,

whose analogous construction in ‘Riemannian twistor theory’ has been already considered
in [18]. To see which twistor spaces of that kind over a four-manifold admit a Kähler metric
one may consult[10]. For the symplectic case, especiallyR2n canonical, one may also
consult[13].

Recall thatG/U0 is a Hermitian symmetric space, hence Kählerian. With the help
of the Killing form and a Cartan’s decomposition ofsp(2n,R) = u0 ⊕mJ one defines a
symplectic form onZ0 by

Ω∇ = t π∗ω − τ,

wheret ∈]0,+∞[ is fixed and

τ(X, Y ) = 1
2Tr (PX)Φ(PY ).

The following is trivial to check.

Lemma 5.1. Ω∇ is non-degenerate and J∇ is compatible with it. The induced metric is
positive definite.

Although the parametert will not teach us anything special about the twistor space,
besides that it could also give a pseudo-metric, it may become important at some moment.

Proposition 5.1. For any X, Y,Z ∈ TZ0

dτ(X, Y,Z) = −1
4Tr (Rπ

∗∇
X,Y ◦ π∗∇ZΦ+ Rπ

∗∇
Y,Z ◦ π∗∇XΦ+ Rπ

∗∇
Z,X ◦ π∗∇YΦ).

Proof. Let us first seeDΩ∇ = 0. By previous remarks we are left to checkDτ = 0.

DXτ (Y,Z) = X(τ(Y,Z)) − τ(DXY,Z) − τ(Y,DXZ)

= X(τ(Y,Z)) − 1
2Tr (P(DXY )ΦPZ + PYΦP(DXZ))

= X(τ(Y,Z)) − 1
2TrDX(PY ΦPZ)

= X(τ(Y,Z)) − d(1
2Tr (PY ΦPZ))(X) = 0.

Now, it is well known that

dτ(X, Y,Z) = τ(TDX,Y , Z) + τ(TDY,Z,X) + τ(TDZ,X, Y ).

Since

τ(TDX,Y , Z) = 1
4Tr ([PTDX,Y ,Φ]PZ) = −1

4Tr (π∗R∇
π∗X,π∗Y [PZ,Φ])

= −1
4Tr (Rπ

∗∇
X,Y ◦ π∗∇ZΦ),

the result follows. �
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Theorem 5.2. Ω∇ is closed if and only if ∇ is flat. In such case,Z0
M is a Kähler manifold.

Proof. Since dπ∗ω = 0, we only have to do an analysis of dτ on four cases — with three
horizontal or vertical tangent vectorsX, Y,Z.

The only possible non-trivial case is sayX, Y horizontal andZ vertical. Then, sinceτ
onV is non-degenerate, dτ(X, Y,Z) = τ(TDX,Y , Z) = 0 for all thoseX, Y,Z iff P(TD) = 0.
Equivalently, [π∗R∇ , Φ] = 0, or

[R∇
x , j] = 0, ∀j ∈ π−1(x), x ∈ M.

Now, for anyJ compatible with (R2n, ω), let u0
J be the unitary Lie algebrasp(2n,R) ∩

gl(2n, J). It is then trivial to see that

h =
⋂

J∈G/U0

u0
J

is a G-module under the adjoint action. Becausesp(2n,R) is irreducible, we haveh = 0
and thus the ‘only if’ part of the theorem.

For the last part of the theorem we recall thatR∇ = 0 implies integrability of the almost
complex structureJ∇ as well. �

NoticeD is always Hermitian,Ω∇ may be K̈ahlerian, butTD is never 0. Thus the (0,1)
part ofD cannot be the∂ operator.

Let 〈, 〉 be the induced metric, so that

〈X, Y〉 = t π∗ω(X,J∇Y ) + 1
2Tr (PXPY )

and thusH∇ ⊥ V. Let ·v denote the vertical part of any tangent-valued tensor.

Theorem 5.3. (i) The Levi-Civita connection of 〈 , 〉 is given by

DXY = DXY − PY (π∗X) − 1
2π

∗RvX,Y + S(X, Y )

where S is symmetric and defined both by

〈Sv(X, Y ), A〉 = 〈Aπ∗X,π∗Y〉, ∀A ∈ V,

and

〈Sh(X,B), Y〉 = 1
2〈π∗RvX,Y , B〉, ∀Y ∈ H∇ .
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Hence for X, Y ∈ H∇ and A,B ∈ V we have

Sv(X,A) = Sv(A,B) = 0,

Sh(X, Y ) = Sh(A,B) = 0.

(ii) The fibres π−1(x), x ∈ M, are totally geodesic in Z0
M .

(iii) If ∇ is flat, then DJ∇ = 0.

Proof. (i) Note thatSh is symmetric by definition and that, to confirmSv is symmetric,
we just have to check everyA ∈ V is self-adjoint:

〈Aπ∗X,π∗Y〉 = t ω(Aπ∗X,Φπ∗Y )

= t ω(π∗X,ΦAπ∗Y ) = 〈π∗X,Aπ∗Y〉.

Now let us see the torsion condition:

TD(X, Y ) = TD(X, Y ) − PY (π∗X) − 1
2π

∗RvX,Y + S(X, Y ) + PX(π∗Y )

+1
2π

∗RvY,X − S(Y,X)

= TD(X, Y ) + P ∧ dπ(X, Y ) − π∗RvX,Y = 0.

For the metric condition it is wise, from now on, to letX, Y,Z denote horizontal andA,B,C
vertical vector fields. We already knowD is Hermitian, so to simplify computations let
ξ = D−D. Then

ξXY = −1
2π

∗RvX,Y + Sv(X, Y ), ξXA = −AX+ Sh(X,A),

ξAX = Sh(X,A), ξAB = 0

and thus in particular, from the last formula, we deduce (ii). Now

DX〈, 〉(Y,Z) = −〈ξXY,Z〉 − 〈Y, ξXZ〉 = 0,

DX〈, 〉(Y,A) = −〈ξXY,A〉 − 〈Y, ξXA〉
= 1

2〈π∗RvX,Y , A〉 − 〈Sv(X, Y ), A〉 + 〈Y,AX〉 − 〈Y, Sh(X,A)〉 = 0,

−DX〈, 〉(A,B) = 〈ξXA,B〉 + 〈A, ξXB〉 = 0,

−DA〈, 〉(X, Y ) = 〈Sh(X,A), Y〉 + 〈X, Sh(Y,A)〉
= 1

2〈π∗RvX,Y , A〉 + 1
2〈π∗RvY,X,A〉 = 0,

−DA〈, 〉(X,B) = 〈ξAX,B〉 + 〈X, ξAB〉 = 0,
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and finally

−DA〈, 〉(B,C) = 0.

(iii) We already know this, but we are glad to confirm: if∇ is flat thenSh = 0. Hence for
all vector fields

DXJ
∇Y = J∇DXY − J∇PY (π∗X) + Sv(X,J∇Y ).

It is an easy task to show〈Sv(X,J∇Y ), A〉 = 〈J∇Sv(X, Y ), A〉 (an identity also following
from the theory of the 2nd fundamental form in Kähler geometry), so we are finished.�

One may writeSv explicitly and construct a symplectic-orthonormal basis ofV induced
by a given such basis onH∇ . We show the first of these assertions.

Proposition 5.2. For X, Y horizontal

Svj (X, Y ) = −1
2t{ω(X, )jY + ω(jY, )X+ ω(jX, )Y + ω(Y, )jX}.

Proof. Since this formula is clearly symmetric we just have to verify thatSv(X,X) ∈ V
and〈Sv(X,X), A〉 = 〈AX,X〉 for any vertical vectorA ∈ V. For the first part

ω(SvX,XY,Z) = −tω(ω(X, Y )jX+ ω(jX, Y )X,Z)

= −t{ω(X, Y )ω(jX,Z) + ω(jX, Y )ω(X,Z)} = ω(SvX,XZ, Y )

and

SvX,Xj = −t{ω(X, j )jX+ ω(jX, j )X}
= tj{ω(jX, )X+ ω(X, )jX} = −jSvX,X.

Now let (e1, . . . , en, je1, . . . , jen) be an orthonormal and symplectic basis ofH∇
j �

Tπ(j)M. Then

〈Sv(X,X), A〉 = 1
2Tr Sv(X,X)A

= 1
2ω(Sv(X,X)Aei, jei) + 1

2ω(Sv(X,X)Ajei, j2ei)

= ω(Sv(X,X)Aei, jei)

= −tω(ω(X,Aei)jX+ ω(jX,Aei)X, jei)

= tω(AX,ω(jX, jei)ei) − tω(AX,ω(jX, ei)jei)

= tω(AX, jX) = 〈AX,X〉. �
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5.1. Kählerian twistor spaces

Next we present a result about the sectional curvature of the Kählerian twistor spaceZ0.
Since the result is not used anymore we do not show its long proof. Until the end of the
subsection assumeR∇ = 0.

Theorem. Let � be a two-plane in TjZ0 spanned by the orthonormal basis {X+ A, Y +
B}, X, Y ∈ H∇ , A, B ∈ V. Then the sectional curvature of � is

kj(�) = −〈RD(X+ A, Y + B)(X+ A), Y + B〉
= 1

2(||X||2||Y ||2 + 3t2ω(X, Y )2 − 〈X, Y〉2) + ||BX− AY ||2
+2〈[A,B]X, Y〉 − ||[A,B]||2

where [, ] is the commutator bracket. Thus,

kj(�)

{
> 0 for� ⊂ H∇

< 0 for� ⊂ V.

We remark that the second part of the theorem can be obtained immediately from
Gauss-Codazzi’s equations. First, notice that the horizontal distribution is integrable when
∇ is flat. Then the horizontal leaves are immediately seen to haveπ∗∇ for Levi-Civita
connection with the induced metric, and hence they are flat. Finally, forX, Y horizon-
tal and orthonormal, and beingS the second fundamental form, a formula of Gauss
says

kj{X, Y} = ||S(X, Y )||2 − 〈S(X,X), S(Y, Y )〉
= 〈S(X, Y )X, Y〉 − 〈S(X,X)Y, Y〉 = etc

which is positive, as we may deduce followingProposition 5.2. For the totally geodesic
vertical fibres ofZ0, we recall that−||[A,B]||2 is the sectional curvature of the hyperbolic
spaceSp(2n,R)/U(n).

One can find the Cauchy-Riemann operator on the tangent bundle ofZ0. We shall
proceed to do this, hoping to bring further understanding to the Kählerian case.

Proposition 5.3. (i) A tangent vector field Y on Z0
M is holomorphic iff

DXY + J∇DJ∇XY − 2(PY )π∗X = 0, ∀X.

(ii) H∇ is a holomorphic subvector bundle of TZ0.
(iii) RD is a (1,1)-form.
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Proof. (i) It is well known that∂ = ′′ ◦D when we see the tangent space as aC-vector
bundle. Hence

∂X+iJ∇X(Y − iJ∇Y ) = DXY +DJ∇XJ
∇Y + i(DJ∇XY − J∇DXY )

= DXY + J∇DJ∇XY − iJ∇ (DXY + J∇DJ∇XY ).

Therefore,∂ operates as the real part of the above, which is equal to

DXY − (PY )π∗X+ S(X, Y ) + J∇DJ∇XY − J∇ (PY )π∗J∇X+ J∇S(J∇X, Y )

= DXY + J∇DJ∇XY − 2(PY )π∗X.

(ii) We have seenD is a Hermitian connection onH∇ � E. From the formula above we
immediately find thatD determines a∂-operator onE coinciding with∂, hence integrable.
Moreover, by a famous theorem of Koszul-Malgrange ([11]),RD must not have (0,2)-part.

(iii) This follows from (ii). However, one may argue as inCorollary 5.1, formula
(5.2). �

NoticeV ⊂ EndE also inherits an integrable complex structure as a manifold, by part
(ii). However, this has no longer anything to do withD orJ∇ .

In conclusion, the K̈ahlerian twistor spaceZ0
M has holomorphic charts inCn ×

C
1
2n(n+ 1) like

H ×W or U × V

withH × {w} horizontal and{x} × V vertical, but never a chart of the kindH × V . This is
not new though; it agrees with the fact that the bundle projectionπ is never holomorphic.

5.2. Twistor space of a Riemann surface

Until the end of this section assume (M,ω, J0) is a Riemann surface. Then there are
various ways to describeZ0

M . For example, combining the well known isomorphismj �→
(j + J0)−1(j − J0), valid in general, with an extra property of real dimension two, one may
deduce easily thatZ0

M is diffeomorphic to the radius 1 disk bundle ofT+M ⊗c T
+M (see

[1]). This transformation is particularly suitable for the study ofJ∇ with ∇ reducible to
U(1): we then get a biholomorphism betweenω-twistor spaces.

SupposeM is connected, orientable and compact. Then its Euler characteristic is equal
to 2− 2g whereg is the genus ofM. We know a way to embedZ0

M in P1(TM ⊗ C). Since
this is associated to an even Euler number bundle, we may use a result from[12] on the
classification of sphere bundles over Riemann surfaces to conclude that it is diffeomorphic
to the trivial bundleM × S2. Hence it yields thatM parameterizes a disc flowing insideS2,
the twistor’s fibres, with boundarythe principalU(1)-bundle of frames.

Here is a corollary ofTheorem 5.1concerning the complex structure of twistor space.

Corollary 5.1. If M is a Riemann surface, then H∇ and V are holomorphic line bundles
over Z0

M .
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Proof. Let D = π∗∇ − P be the connection defined earlier, induced here by the Levi-
Civita connection∇ of ω(, J0). First we compute in any dimension

dπ
∗∇P(X, Y ) = π∗∇X(PY ) − π∗∇Y (PX) − P [X, Y ]

= π∗∇XPY − π∗∇YPX+ P(TD(X, Y ) −DXY +DYX)

= π∗∇XPY − π∗∇YPX+ P(π∗R∇
X,Y ) − π∗∇XPY + [PX,PY ]

+π∗∇YPX− [PY, PX]

= P(π∗RX,Y ) + 2[PX,PY ].

Hence, by a well known formula on the curvature, we have

RD = Rπ
∗∇ − dπ

∗∇P + P ∧ P (5.1)

= π∗R− P(π∗R) − P ∧ P. (5.2)

Now, recall the twistor space is always a complex two-manifold andD is aC-linear con-
nection. Moreover, in dimensionn = 1 we also have thatR∇ is proportional toω and so it
is type (1,1) for allj in any fibre of the twistor space — an assertion equivalent toπ∗R being
(1,1) forJ∇ . On the other hand,P(J∇+

X) = Φ+P(X) so, if we prove [m+
J ,m

+
J ] = 0, then

we may concludeRD is type (1,1). The result now follows for both vector bundles referred,
by the theorem of Koszul-Malgrange previously mentioned.

If A,B ∈ mJ , then

J+AJ+B = AJ−J+B = 0

whereJ+, J− are the projections onto the+ or −√−1-eigenbundles. �

As the reader may notice, the result is valid in any dimension onceJ∇ is integrable. We
combine the proof above with Eq.(1.4) in Theorem 1.1.

Finally, we reach a goal: if one assigns a metric toM, then all previous constructions
follow and one is left with a new tool in the study of Riemann surfaces. LettingF denote
one of the sheaves of germs of holomorphic sections ofH∇ or V, then

R1π∗F

may tell us something new aboutM. Indeed, at the end of the last section we discuss and
conjecture thatR1π∗O is non zero.

6. The Penrose Transform

Let Z be a complex manifold of dimensionm. Recall thatZ is said to be stronglyq-
pseudoconvex if it admits a smooth exhaustion function which is stronglyq-pseudoconvex
outside of a compact subset, i.e. there existsφ : Z → R of class C∞ such that the level sets
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{x ∈ Z : φ(x) < c}, c ∈ R, are relatively compact inZ, the exhaustion, and such that the
Levi form

L(φ) : TZ⊗ TZ −→ R

has at leastm− q+ 1 positive eigenvalues in the complement of a compact subsetC. If
C = ∅, thenZ is said to be holomorphicallyq-complete.

Recall that

L(φ) = 4
∑
i,j

∂2φ

∂zi∂z̄j
dzi ⊗ dz̄j

is a Hermitian two-tensor, independent of choice of the chart (z1, . . . , zm) of Z. From
the definition we see thatq-completeness impliesq+ 1-completeness. Holomorphically
1-complete manifolds are known as Stein manifolds.

Theorem 6.1 ([22]). A simply connected complete Kähler manifold X of everywhere non-
positive sectional curvature is a Stein manifold.

The proof of this theorem due to H. Wu contains the following arguments. Letd : X → R

be the Riemannian distance function from a fixed pointp ∈ X. Then it is proved thatd2 is
smooth and strictly plurisubharmonic. It is an exhaustion function due to completeness: a
bounded and closed set is compact.

BesidesCn, the canonical example to which the theorem above applies is the Siegel
domain. So the square of the distance function inSp(2n,R)/U(n) with invariant hyperbolic
metric is C∞. Notice the same result does not apply to all components ofG/Ul, as their
natural metrics may be indefinite. Yet they are Stein spaces as we have remarked earlier.

Now let (M,ω,∇) be a symplectic manifold of dimension 2n with a symplectic con-
nection of Ricci type, i.e. with vanishing Weyl curvature tensor. Consider the twistor space
(Z0,J∇ ), which is then a complex manifold of dimensionn+ k with k = n(n+ 1)/2 =
dim Siegel domainG/U0.

Lemma 6.1. Let D be a domain in Cm and X a regular complex analytic subspace. If
ψ ∈ C2

D then

L(ψ)|TX⊗TX = L(ψ|X).

Proof. We know that for everyz ∈ X there is a chart (z1, . . . , zm) in a neighbor-
hoodU of z such thatX ∩ U = {z ∈ U : zk+1 = · · · = zm = 0}. SinceTz(X ∩ U) = {u ∈
TzU : dzi(u) = 0, i > k} we find the result just by looking at the definition of the Levi
form. �

M always admits a smooth and compatible almost complex structureJ, so we define
a smooth functionh on Z0 to be the square of the distance in each fibre to the section
J — which we know to arise from a smooth Riemannian metric on the vertical bundle
ker dπ.
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Theorem 6.2. If M has a smooth exhaustion function φ, then Z0 is n+ 1-complete.

Proof. Since it is easy to proveφ2 is also an exhaustion function, we may already assume
φ to be positive. Now let

ψ = h+ φ ◦ π.

This is a smooth and exhaustion function. To prove this notice thath is positive, so the
closed level sets ofψ are inside the closed level sets ofφ ◦ π for the same constantc. These
project onto a compact subsetKc of M. Then we have that

{j ∈ Z0 : ψ(j) ≤ c} ⊂ {j ∈ π−1(Kc) : ψ(j) ≤ c}
⊂ {j ∈ π−1(Kc) : h(j) ≤ c + supKc φ}

and, since the biggest set is compact, the closed level sets ofψ are compact.
Now, for anyx ∈ M, we apply the lemma to the complex submanifoldπ−1(x) and use

the previous theorem to find thatL(ψ|π−1(x)) = L(h|π−1(x)) hask positive eigenvalues. Since
L(ψ) is Hermitian symmetric, there is an orthogonal complement for ker dπ and we may
conclude thatL(ψ) has at leastk positive eigenvalues. HenceZ0 is q-complete, whereq is
such thatn+ k − q+ 1 = k. �

Example 1. If M is compact we may takeφ = 0 in the theorem above. In particular,Z0
CP

n

is n+ 1-complete (and not less).

Example 2. If M has some Riemannian structure for which there is a pole, i.e. there exists

x0 ∈ M such that exp :Tx0M → M is a diffeomorphism, then we may takeφ = || exp−1 ||2.

Example 3. Let M = Bε(0), the open ball of radiusε in (R2n, ω0). For this case we find
φ(x) = − log(ε2 − ||x||2), which is the famous function of K. Oka.

One must realise now that the difficult thing is to find completeness belown+ 1. This
will certainly involve the horizontal part ofJ∇ , which so much characterises twistor
spaces.

Remark. In general, it is impossible to find a better result than that of the theorem: we know
the Levi-Civita connection ofCPn is of Ricci type and we have seen that parallel complex
structures embed holomorphically into the twistor space. On the other hand it is known that
a q-complete space does not haven-dimensional compact analytic submanifolds, for any
n ≥ q.

By the same token, theKählerian twistor spaceZT2n is just holomorphicallyn+ 1-
complete, and no less.
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However, with some restriction, it may well happen that it is possible to carry on. As we
have seen in Example 1.1 of the Examples section, together withTheorem 4.1, the twistor
space ofR2 with trivial connection∇0, and hence with allσ · ∇0, is 1-complete or Stein
(such property is preserved under biholomorphism).

We are now ready to show the Penrose Transform.
In a parallelism with what was done in[3,9,17], in the celebrated Riemannian case of

CP
3 → S4, we define the “Penrose Transform” in the symplectic context to be the direct

image of any complex analytic sheaf over twistor space onto the base manifold. Thus a
functorO→ C∞.

Theorem 6.3. Let (M,ω,∇) be as above and F a coherent analytic sheaf over Z0. Then

Rqπ∗F = 0, ∀q ≥ n+ 1.

Proof. RecallRqπ∗F is the sheaf associated to the presheafU �→ Hq(π−1U,F). Hence
the stalk atx ∈ M is

lim
U�x indHq(π−1U,F).

Now, for a sufficiently small neighborhoodU of x, there is a chartσ : U → B ⊂ R2n such
thatσ∗ω0 = ω andσ(x) = 0. Since we have a theorem saying there is a biholomorphism

Σ : (Z0
U,J

∇ ) −→ (Z0
B,J

σ·∇ ),

we may suppose our base space isB and thecoherent analytic sheaf isΣ∗F.
Finally, the {Bε(0)}ε>0 form a basis for the neighborhoods of 0 and, by example 3

above, allZ0
Bε

= π−1(Bε) are n+1-complete. By definition of inductive limit we find that
(Rqπ∗F)x = 0,∀q ≥ n+ 1, appealing to Andreotti-Grauert’s “t. de finitude pour la coho-
mologie des espaces complexes” (cf.[2]). �

Although we knowHq(π−1(x), ι∗F) = 0,∀q ≥ 1, whereι is the inclusion map, one has
to notice in the above proof that the{π−1(U)} do not form a basis of the neighborhoods of
π−1(x), as they always do in the Riemannian case (the fibre is compact).

Remark. Consider Example 1.1 in Section3. Recall the global chart (z,w) �→ (ξ,w) where
ξ = z− wz̄ is a complex coordinate. Let us fixz ∈ R2 and denote

Xε = {(ξ,w) ∈ C2 : |w| < 1, |z| < ε}

i.e. the image inC2 of π−1(Bε(z)). The condition|z| < ε, wherez = ξ+wξ
1−|w|2 , shows thatXε

is not pseudoconvex: we can show that some regions in the boundary are convex and others
are concave. Pseudoconvexity inCn, n > 1, is the same as being Stein, so we may follow
[16] and conjecture thatH1(Xε,O) �= 0.
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If such conjecture is true, then we can also deduce that our sheavesR1π∗F ex-
isting always over Riemann surfaces (see Section5.2) are not in general completely
trivial.
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